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Lattice systems with compact state space 
• We discuss statistical physics systems on ℤ𝑑, aiming to develop a quantitative 

understanding of the effect of adding disorder to them. 

• We start with the case of a compact state space. 

• Setup:  (1) Compact metric space 𝑆 equipped with a Borel measure 𝜅. 

           (2) Translation-invariant finite range and finite energy Hamiltonian 𝐻. 

• As usual, for a finite domain Λ ⊂ ℤ𝑑, at temperature T and with boundary 
conditions 𝜏: ℤ𝑑 → 𝑆, configurations 𝜎: ℤ𝑑 → 𝑆 coinciding with 𝜏 outside Λ are 
sampled from the probability measure with density 

1

𝑍𝑇,Λ,𝜏
exp −

1

𝑇
𝐻Λ 𝜎  

with respect to the measure  𝑑𝜅 𝜎𝑣𝑣 , where 𝑍𝑇,Λ,𝜏 is the partition function and 
𝐻Λ contains the terms in the Hamiltonian depending on the spins in Λ. 
Periodic boundary conditions and the zero-temperature limit are also allowed. 

• Examples: Ising model: 𝑆 = {−1,1}, 𝜅 = counting, 𝐻 𝜎 = − 𝜎𝑢𝜎𝑣𝑢~𝑣  

• Potts model: 𝑆 = 1,2, … , 𝑞 , 𝜅 = counting, 𝐻 𝜎 = − 1𝜎𝑢=𝜎𝑣𝑢~𝑣  

• Spin O(n) model with 𝑛 ≥ 2: 𝑆 = 𝕊𝑛−1, 𝜅 = uniform, 𝐻 𝜎 =  |𝜎𝑢 − 𝜎𝑣|
2

𝑢~𝑣  
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Disordered lattice systems 
• Noised observables: Let 𝑓: 𝑆ℤ

𝑑
→ ℝ𝑚, for some 𝑚 ≥ 1, be a bounded measurable 

function depending on the spins in a finite neighborhood of the origin. 
Disorder: Let 𝜂𝑣 𝑣∈ℤ𝑑 be independent standard 𝑚-dimensional Gaussian vectors. 

Disordered Hamiltonian: 𝐻𝜂 𝜎 = 𝐻 𝜎 − 𝜆 𝜂𝑣 ⋅ 𝑓 𝒯𝑣 𝜎𝑣  
where 𝒯𝑣 𝜎  is the configuration 𝜎 translated by 𝑣. 

• Examples: Random-field Ising model: 𝑚 = 1 and 𝑓 𝜎 = 𝜎0. Thus 

𝐻𝜂 𝜎 = − 𝜎𝑢𝜎𝑣
𝑢~𝑣

− 𝜆 𝜂𝑣𝜎𝑣
𝑣

 

• Edwards-Anderson spin glasses: 𝑆 = −1,1 , 𝜇 = counting, 𝑓 𝜎 = 𝜎𝑒𝑗𝜎𝟎 𝑗=1

𝑑
 . 

𝐻𝜂 𝜎 = −𝜆 𝜂𝑢,𝑣𝜎𝑢𝜎𝑣
𝑢~𝑣

 

• Random-field 𝑞-state Potts model: m = q and 𝑓 𝜎 = 1𝜎𝟎=1, … , 1𝜎𝟎=𝑞 . Thus 

𝐻𝜂 𝜎 = − 1𝜎𝑢=𝜎𝑣
𝑢~𝑣

− 𝜆  𝜂𝑣,𝑘1𝜎𝑣=𝑘

𝑞

𝑘=1𝑣

 

• Random-field spin 𝑂(𝑛) model, 𝑛 ≥ 2: 𝑚 = 𝑛 and 𝑓 𝜎 = 𝜎0 (with 𝕊n−1 ⊂ ℝ𝑛), 

𝐻𝜂 𝜎 =  |𝜎𝑢 − 𝜎𝑣|
2 − 𝜆 𝜂𝑣 ⋅ 𝜎𝑣

𝑣𝑢~𝑣
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Imry-Ma phenomenon 
• Imry-Ma (1975) considered  the effects of disorder for the random-field Ising and 

spin 𝑂(𝑛) models, and predicted that in low dimensions, an arbitrarily small 
disorder strength 𝜆 causes the models to lose their ordered phase, as follows:  
The random-field Ising model is disordered at all temperatures for 𝑑 ≤ 2. 
The random-field spin 𝑂(𝑛) model is disordered at all temperatures for 𝑑 ≤ 4.  

• Aizenman-Wehr (1989) proved the predictions as part of a general statement. 

• Notation: Write Λ𝐿
𝑑 ≔ −𝐿,… , 𝐿 𝑑. For each disorder 𝜂, write ⋅ 𝜇 for the thermal 

expectation according to a Gibbs measure 𝜇 of the 𝜂-disordered system. 
Write ℙ and 𝔼 for the probability and expectation operator over 𝜂. 

• Theorem (Aizenman-Wehr, special case): For a disordered lattice system with 
compact state space (as discussed above) in dimensions 𝑑 = 1, 2, at temperature 
 0 ≤ 𝑇 < ∞ and disorder strength 𝜆 > 0, the limit  

lim
𝐿→∞

1

𝐿𝑑
 𝑓 𝒯𝑣 𝜎 𝜇

𝑣∈Λ𝐿
𝑑

 

exists and has the same value for all Gibbs measures 𝜇 and almost all 𝜂. 
The same holds in dimensions 1 ≤ 𝑑 ≤ 4 for the spin 𝑂(𝑛) models with 𝑛 ≥ 2. 

• Our goal: Develop a quantitative understanding of this phenomenon. 
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Random-field Ising model 
• Random-field Ising model Hamiltonian: 𝐻𝜂 𝜎 = − 𝜎𝑢𝜎𝑣𝑢~𝑣 − 𝜆 𝜂𝑣𝜎𝑣𝑣  

• The disordered model still satisfies the usual monotonicity (FKG) properties. 
In particular, the model has maximal and minimal Gibbs measures 𝜇𝜂,+ and 𝜇𝜂,−, 
arising in the thermodynamic limit from constant boundary conditions. The 
Aizenman-Wehr theorem implies that 𝜇𝜂,+ = 𝜇𝜂,− in two dimensions 𝜂-almost 
surely, so that the model has a unique Gibbs measure. 

• A natural quantitative parameter is 𝑚𝐿 ≔ 𝔼 𝜎0 Λ𝐿
2

+  where ⋅
Λ𝐿
2

+  denotes the 

thermal expectation in −𝐿,… , 𝐿 2 with +1 boundary conditions. 

• A bound of the form 𝑚𝐿 ≤ exp −𝑐 𝜆, 𝑇 𝐿  is relatively simple for large disorder 
strength 𝜆 or high temperatures 𝑇, so interested in small 𝜆 and low temperature. 

• Results: 𝑚𝐿 ≤
𝐶 𝜆

log log 𝐿
 (Chatterjee 2017), 𝑚𝐿 ≤

𝐶 𝜆

𝐿𝑐 𝜆  (Aizenman-P. 2018) and finally 

𝑚𝐿 ≤ 𝐶 𝜆 exp −𝑐 𝜆 𝐿  

proved at zero temperature by Ding-Xia 2019 and then at positive temperature by 
Ding-Xia 2019 and Aizenman-Harel-P. 2019. 

• Still open to determine correlation length 𝑐(𝜆). Proof seems to yield 𝑐 𝜆 ≤ 𝑒𝑒
1/𝜆2

 

while physics predictions are that 𝑐 𝜆 ≃ 𝑒
1

𝜆 or 𝑐 𝜆 ≃ 𝑒
1

𝜆2. 
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Quantitative results 
• The other models discussed (Potts, spin-glasses, spin 𝑂(𝑛)) do not share the 

monotonicity properties of the random-field Ising model and the proof techniques 
break down for them. Indeed, even the choice of which quantity to bound is non-
obvious since it is unclear which boundary conditions 𝜏 maximize or minimize the 
average 𝑓 𝒯𝑣 𝜎

Λ𝐿
2

𝜏  and, indeed, it may be that these boundary conditions 

depend on the disorder 𝜂 and on 𝐿 and 𝑣. We obtain the following results. 

• Theorem (Dario-Harel-P 2020+): For each two-dimensional disordered lattice 
system of the type described above, at temperature 0 ≤ 𝑇 < ∞ and disorder 
strength 𝜆 > 0, there exists 𝐶 > 0 so that for all 𝐿 ≥ 2, 

𝔼 sup
𝜏1,𝜏2:ℤ2→𝑆

1

𝐿2
 𝑓 𝒯𝑣 𝜎

Λ𝐿
2

𝜏1

𝑣∈Λ𝐿
2

− 𝑓 𝒯𝑣 𝜎
Λ𝐿
2

𝜏2 ≤
𝐶

log log 𝐿
1
4

 

For the 𝑑-dimensional random-field spin 𝑂(𝑛) model with 𝑛 ≥ 2, at temperature 
0 ≤ 𝑇 < ∞ and disorder strength 𝜆 > 0, there exists 𝐶 > 0 so that for all 𝐿 ≥ 2, 

𝔼 sup
𝜏:ℤ𝑑→𝑆

1

𝐿𝑑
 𝜎𝑣 Λ𝐿

𝑑
𝜏

𝑣∈Λ𝐿
𝑑

≤ 𝐶

𝐿−
1
3 𝑑 = 2

𝐿−
1
5 𝑑 = 3

log log 𝐿 −
1
2 𝑑 = 4
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Uniqueness problem 
• Conjecture: For a disordered lattice system with compact state space (as discussed 

above) in dimension 𝑑 = 2, at temperature 0 ≤ 𝑇 < ∞ and disorder strength 
𝜆 > 0, it holds that 𝜂-almost surely, for all vertices 𝑣 ∈ ℤ2, the value of 

𝑓 𝒯𝑣 𝜎 𝜇 

      is the same for all Gibbs measures 𝜇 of the 𝜂-disordered system. 

• The conjecture is equivalent to the following finite-volume statement: 

lim
𝐿→∞

sup
𝜏1,𝜏2:ℤ2→𝑆

𝑓(𝜎)
Λ𝐿
2

𝜏1 − 𝑓 𝜎
Λ𝐿
2

𝜏2 = 0,  𝜂−almost surely 

• The value of 𝒯𝑣 𝜎  itself need not be unique in general systems. 
For instance, a global sign flip applied to 𝜎 in a spin glass system (with Hamiltonian 
𝐻𝜂 𝜎 = −𝜆 𝜂𝑢,𝑣𝜎𝑢𝜎𝑣𝑢~𝑣 ) takes one Gibbs measure to another. 

• Applied to two-dimensional spin glasses at zero temperature, the conjecture 
implies the conjecture that the spin glass system has a unique ground-state pair. 
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Partial uniqueness result 
• Due to the disorder in the systems considered, it does not make sense to consider 

translation-invariant Gibbs measures. Instead, the following notion of translation-
covariant Gibbs measures has been proposed. 

• A measurable map 𝜌 from the disorder variables 𝜂 to the Gibbs measures of the 𝜂-
disordered system is called a translation-covariant Gibbs measure if 

𝜌 𝒯𝑣 𝜂 = 𝒯𝑣 𝜌 𝜂  

for all vertices 𝑣 ∈ ℤ𝑑 (the translation 𝒯𝑣 naturally extends to Gibbs measures). 

• Compactness arguments (Aizenman-Wehr, Newman-Stein) show that translation-
covariant Gibbs measures always exist for the disordered systems considered 
above (as barycenters of translation-covariant metastates). 

• Theorem: For a disordered lattice system with compact state space (as discussed 
above) in dimension 𝑑 = 2, at temperature 0 ≤ 𝑇 < ∞ and disorder strength  
𝜆 > 0, it holds that 𝜂-almost surely, for all vertices 𝑣 ∈ ℤ2, the value of 

𝑓 𝒯𝑣 𝜎 𝜌(𝜂) 

      is the same for all translation-covariant Gibbs measures 𝜌. 

• Corollary: For the two-dimensional spin glass model at zero temperature, if there 
exists a translation-covariant extremal Gibbs measure then there is a unique 
translation-covariant Gibbs measure up to a global sign flip. 
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Proof sketch for compact state space 
• Theorem recalled: For the above disordered systems with compact state space in 

two dimensions, at 0 ≤ 𝑇 < ∞ and 𝜆 > 0, there exists 𝐶 > 0 so that for all 𝐿 ≥ 2, 

𝔼 sup
𝜏1,𝜏2:ℤ

2→𝑆

1

𝐿2
 𝑓 𝒯𝑣 𝜎

Λ𝐿
2

𝜏1

𝑣∈Λ𝐿
2

− 𝑓 𝒯𝑣 𝜎
Λ𝐿
2

𝜏2 ≤
𝐶

log log 𝐿
1
4

 

• To simplify, assume 𝑓 𝜎 = 𝑓 𝜎𝟎 ∈ ℝ and fix 𝑇 > 0. Write 𝑍𝑇,Λ,𝜏
𝜂

 for the partition 

function at temperature 𝑇, in a finite Λ ⊂ ℤ2 and with boundary conditions 𝜏. Thus 

𝑍𝑇,Λ,𝜏
𝜂

≔  𝑒−
1
𝑇𝐻Λ

𝜂
𝜎  𝑑𝜅 𝜎𝑣

𝑣∈Λ

 𝛿𝜏𝑣 𝜎𝑣
𝑣∈Λ𝑐

 

with 𝐻Λ
𝜂
𝜎  the terms in the Hamiltonian 𝐻𝜂 𝜎 = 𝐻 𝜎 − 𝜆 𝜂𝑣𝑓 𝒯𝑣 𝜎𝑣  

depending on the spins in Λ. Let 𝐹Λ
𝜂
𝜏 ≔

𝑇

Λ
log 𝑍𝑇,Λ,𝜏

𝜂
 be minus the free energy. 

• Standard facts: 1) 𝐹Λ
𝜂
𝜏  is a convex function of 𝜂. 

• 2) For each Λ: sup
𝜏1,𝜏2

𝐹Λ
𝜂
𝜏1 − 𝐹Λ

𝜂
𝜏2 ≤

𝐶 𝜕Λ

Λ
. 

• 3) Write 𝜂 = (𝜂 Λ, 𝜂Λ
⊥) where 𝜂 Λ ≔

1

Λ
 𝜂𝑣𝑣∈Λ  and 𝜂Λ,𝑣

⊥ ≔ 𝜂𝑣 − 𝜂 Λ. Then 

𝜕

𝜕𝜂 Λ
𝐹Λ
(𝜂 Λ,𝜂Λ

⊥)
𝜏 =

𝜆

Λ
 𝑓 𝒯𝑣 𝜎 Λ

𝜏

𝑣

,with the sum over terms involving spins in Λ 
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Proof sketch II 
• Lemma: Let Λ satisfy 𝜕Λ ≤ 𝐶 Λ . Then for each 𝛿 > 0, 

ℙ sup
𝜏1,𝜏2:ℤ

𝑑→𝑆

𝜆

Λ
 𝑓 𝒯𝑣 𝜎Λ,𝜏1

𝜂
− 𝑓 𝒯𝑣 𝜎Λ,𝜏2 

𝜂

𝑣

< 2𝛿 ≥ exp −
𝐶

𝛿4
 

• Proof sketch: Claim: Let g: ℝ → ℝ be a convex 1-Lipschitz function. Set 
𝑁𝑟 𝑔 ≔ ℎ:ℝ → ℝ convex 1−Lipschitz  ℎ − 𝑔 ∞ ≤ 𝑟 . 

Then for each 𝑟, 𝛿 > 0. 

Leb 𝑥 ∈ ℝ ∃ℎ ∈ 𝑁𝑟 𝑓 , ℎ′ 𝑥 − 𝑔′ 𝑥 ≥ 𝛿 ≤
𝐶𝑟

𝛿2
 

• Fix 𝜏0: ℤ
𝑑 → 𝑆 and let g x ≔ 𝐹

Λ

(𝑥,𝜂Λ𝐿
⊥ )

𝜏0 . Then for all 𝜏, 𝐹
Λ

(𝑥,𝜂Λ𝐿
⊥ )

𝜏 ∈ 𝑁𝐶 𝜕Λ

Λ

𝑔 . 

On this event, the Claim implies that 

Leb 𝑥 ∈ ℝ ∃𝜏: ℤ𝑑 → 𝑆,  
𝜕

𝜕𝜂 Λ
𝑔Λ
(𝑥,𝜂Λ

⊥)
𝜏 −

𝜕

𝜕𝜂 Λ
𝑔Λ
(𝑥,𝜂Λ

⊥)
𝜏0 ≥ 𝛿 ≤

𝐶 𝜕Λ

Λ 𝛿2
≤

𝐶

Λ 𝛿2
 

• Since 𝜂 Λ ≔
1

Λ
 𝜂𝑣𝑣∈Λ  is Gaussian with standard deviation 

1

Λ
 we conclude that 

ℙ sup
𝜏:ℤ𝑑→𝑆

𝜆

Λ
 𝑓 𝒯𝑣 𝜎Λ,𝜏

𝜂
− 𝑓 𝒯𝑣 𝜎Λ,𝜏0

𝜂

𝑣

< 𝛿 ≥ exp −
𝐶

𝛿4
 

which implies the lemma. 
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Proof sketch III 
• Let 𝐿 ≥ 2. Call a set Λ′ ⊂ Λ𝐿 𝜖-fluctuative if 

sup
𝜏1,𝜏2:ℤ𝑑→𝑆

𝜆

Λ′
 𝑓 𝒯𝑣 𝜎Λ′,𝜏1

𝜂
− 𝑓 𝒯𝑣 𝜎Λ′,𝜏2 

𝜂

𝑣

< 𝜖 

• Perform a Mandelbrot percolation: Set 𝛿 ≔
𝐶

log log 𝐿
1
4

 and k = 𝐶/𝛿. 

Partition Λ𝐿 into 𝑘 squares. Then partition each of these into 𝑘 squares and so on 
until reaching squares of constant size. A square in this recursive partition is taken 
if it is 4𝛿-fluctuative and the squares containing it are not 4𝛿-fluctuative. 

• Define 𝐵 ≔ {𝑣 ∈ Λ𝐿 ∣ 𝑣 is not in a taken square}. Then 

sup
𝜏1,𝜏2:ℤ𝑑→𝑆

𝜆

Λ𝐿
 𝑓 𝒯𝑣 𝜎ΛL,𝜏1

𝜂
− 𝑓 𝒯𝑣 𝜎ΛL,𝜏2 

𝜂

𝑣

≤ 4𝛿 +
𝐶 𝐵

Λ𝐿
 

• It remains to show that ℙ 𝑣 ∈ 𝐵 ≤ 𝛿. Write Λ0 𝑣 ⊃ Λ1 𝑣 ⊃ Λ2 𝑣 ⊃ ⋯ for the 
partition squares containing 𝑣. Since |Λℓ+1 𝑣 ≤ 𝑐𝛿 Λℓ 𝑣 |, one concludes that 

𝑣 ∈ 𝐵 ⊂ Λℓ 𝑣 ∖ Λℓ+1 𝑣  is not 2𝛿−fluctuative

ℓ

 

• The events in the intersection are independent since the annuli are disjoint. 
The previous lemma bounds their probabilities, concluding the proof. 11 



Non-compact case: 
Random-field random surfaces 

• We now discuss the effect of disorder on systems with non-compact state space. 
Our focus is on random surface models. 

• Let 𝜂𝑣 𝑣∈ℤ𝑑 be independent standard Gaussian random variables. 

• A real-valued random-field random surface is the model on 𝜙: ℤ𝑑 → ℝ with 
Hamiltonian 

𝐻𝜂 𝜙 =  𝑉 𝜙𝑢 − 𝜙𝑣
𝑢~𝑣

− 𝜆 𝜂𝑣𝜙𝑣
𝑣

 

where V:ℝ → ℝ is a measurable even function termed the potential. 
The case V 𝑥 = 𝑥2 is the real-valued random-field Gaussian free field.  

• We also study the integer-valued random-field Gaussian free field which has the 
same Hamiltonian as above with 𝑉 𝑥 = 𝑥2 but restricts to 𝜙: ℤ𝑑 → ℤ. 

• Our goal the localization/delocalization properties of these disordered surfaces. 

• Without disorder: the gradient of these surfaces localizes in all dimensions 𝑑 ≥ 1. 

On Λ𝐿
𝑑, real-valued surfaces delocalize with variance 𝐿 when 𝑑 = 1 and with 

variance log 𝐿 when 𝑑 = 2 while staying localized for 𝑑 ≥ 3. 
The integer-valued GFF behaves similarly except for a roughening transition when 
𝑑 = 2, from localized to logarithmic delocalization as the temperature increases. 
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Random-field random surfaces: results 
• Theorem (Dario-Harel-P 2020+): Consider the real-valued random-field random 

surfaces above at all temperatures 0 ≤ 𝑇 < ∞ and all disorder strengths 𝜆 > 0 on 

Λ𝐿
𝑑 with zero boundary conditions. Assume 0 < 𝑐− ≤ 𝑉′′ ≤ 𝑐+ < ∞. Then 

– Discrete Gradient: 𝔼
1

𝐿𝑑
 𝜙u − 𝜙𝑣

2
{u,v}∈𝐸 Λ𝐿

𝑑 ≈  
𝐿 d = 1

log 𝐿 𝑑 = 2
1 𝑑 ≥ 3

 

– Height fluctuations: 𝔼 𝜙𝟎
2 ≈  

𝐿4−𝑑 𝑑 = 1,2,3
log 𝐿 𝑑 = 4
1 𝑑 ≥ 5

 

• Theorem (Dario-Harel-P 2020+): The integer-valued random-field Gaussian free 
field, at all temperatures 0 ≤ 𝑇 < ∞ and disorder strengths 𝜆 > 0, satisfies the 
gradient estimate above, and, when 𝑑 = 1,2, satisfies 

𝔼
1

𝐿𝑑
 𝜙𝑣

2

𝑣∈Λ𝐿
𝑑

≈ 𝐿4−𝑑 

Additionally, this expectation is bounded in 𝐿 in dimensions 𝑑 ≥ 3 at low 
temperatures and small disorder strength 𝜆 > 0. 
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Random-field random surfaces: 
previous results 

• Bovier-Külske studied a random field Solid-On-Solid model in which the disorder 
enters differently from the way it is introduced here. They proved a certain form of 
delocalization in two dimensions (Bovier-Külske 1996) and localization in three and 
higher dimensions (Bovier-Külske 1994). 

• Külske and Orlandi 2006 prove that for all deterministic fields 𝜂, a random surface 
with field 𝜂 will delocalize with at least logarithmic variance in two dimensions, 
when the potential 𝑉 satisfies sup𝑉 𝑥 < ∞. 

• Van Enter and Külske 2008 proved a form of delocalization for the gradients of the 
random-field random surface for a wide class of potentials in two dimensions. The 
result is non-quantitative. 
They further proved a lower bound on the rate of correlation decay for gradient 
Gibbs measures, when they exist, in three dimensions. 

• Cotar and Külske proved the existence of translation-covariant gradient Gibbs 
measures for random-field random surfaces in dimensions 𝑑 ≥ 3 (Cotar and Külske 
2012) and their uniqueness for each given expected tilt (Cotar and Külske 2015), 
for a large class of potentials. 
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Open questions 
• For disordered systems with compact state space, improve the bounds on 

𝔼 sup
𝜏1,𝜏2:ℤ

𝑑→𝑆

1

𝐿𝑑
 𝑓 𝒯𝑣 𝜎

Λ𝐿
𝑑

𝜏1

𝑣∈Λ𝐿
𝑑

− 𝑓 𝒯𝑣 𝜎
Λ𝐿
𝑑

𝜏2  

If the sum is performed over a concentric box of half the size, does it decay 
exponentially fast with 𝐿 in two dimensions at all 𝑇 and 𝜆 > 0? 

• Uniqueness conjecture: For two-dimensional disordered systems, for each 𝑣 ∈ ℤ2, 
𝜂-almost surely, the value of 𝑓 𝒯𝑣 𝜎 𝜇 is the same for all Gibbs measures 𝜇. 

• Is there a Berezinskii-Kosterlitz-Thouless type transition as the disorder strength 
lowers (i.e., transition from exponential to power-law decay) for the random-field 
spin 𝑂(𝑛) models with 𝑛 = 2 in dimensions 𝑑 = 3 or 𝑑 = 4? What about 𝑛 ≥ 3? 

• What is the localization/delocalization behavior of the integer-valued random-field 
Gaussian free field in dimensions 𝑑 ≥ 3 at high disorder strength 𝜆? 
Conjecture: Delocalization in dimension 𝑑 = 3 and localization when 𝑑 ≥ 5. 
Thus we conjecture a roughening transition in the disorder strength for 𝑑 = 3. 
 

 
15 


