Quantitative estimates for the effect of disorder on low-dimensional lattice systems

Ron Peled, Tel Aviv University Based on joint works with Paul Dario and Matan Harel

Probability seminar of Northwestern University and University of Minnesota, November 18, 2020

Lattice systems with compact state space

- We discuss statistical physics systems on Z^d, aiming to develop a quantitative understanding of the effect of adding disorder to them.
- We start with the case of a compact state space.
- Setup: (1) Compact metric space S equipped with a Borel measure κ .

(2) Translation-invariant finite range and finite energy Hamiltonian *H*.

• As usual, for a finite domain $\Lambda \subset \mathbb{Z}^d$, at temperature T and with boundary conditions $\tau: \mathbb{Z}^d \to S$, configurations $\sigma: \mathbb{Z}^d \to S$ coinciding with τ outside Λ are sampled from the probability measure with density

$$\frac{1}{Z_{T,\Lambda,\tau}}\exp\left(-\frac{1}{T}H_{\Lambda}(\sigma)\right)$$

with respect to the measure $\prod_{v} d\kappa(\sigma_{v})$, where $Z_{T,\Lambda,\tau}$ is the partition function and H_{Λ} contains the terms in the Hamiltonian depending on the spins in Λ . Periodic boundary conditions and the zero-temperature limit are also allowed.

- Examples: Ising model: $S = \{-1,1\}, \kappa = \text{counting}, H(\sigma) = -\sum_{u \sim v} \sigma_u \sigma_v$
- Potts model: $S = \{1, 2, ..., q\}, \kappa = \text{counting}, H(\sigma) = -\sum_{u \sim v} 1_{\sigma_u = \sigma_v}$
- Spin O(n) model with $n \ge 2$: $S = \mathbb{S}^{n-1}$, $\kappa =$ uniform, $H(\sigma) = \sum_{u \sim v} |\sigma_u \sigma_v|^2$

Disordered lattice systems

- Noised observables: Let $f: S^{\mathbb{Z}^d} \to \mathbb{R}^m$, for some $m \ge 1$, be a bounded measurable function depending on the spins in a finite neighborhood of the origin. Disorder: Let $(\eta_v)_{v \in \mathbb{Z}^d}$ be independent standard *m*-dimensional Gaussian vectors. Disordered Hamiltonian: $H^{\eta}(\sigma) = H(\sigma) - \lambda \sum_v \eta_v \cdot f(\mathcal{T}_v(\sigma))$ where $\mathcal{T}_v(\sigma)$ is the configuration σ translated by v.
- Examples: Random-field Ising model: m = 1 and $f(\sigma) = \sigma_0$. Thus

$$H^{\eta}(\sigma) = -\sum_{u \sim v} \sigma_u \sigma_v - \lambda \sum_{v} \eta_v \sigma_v$$

• Edwards-Anderson spin glasses: $S = \{-1,1\}, \mu = \text{counting}, f(\sigma) = (\sigma_{e_j} \sigma_0)_{j=1}^{\mu}$.

$$H^{\eta}(\sigma) = -\lambda \sum_{u \sim v} \eta_{u,v} \sigma_u \sigma_v$$

• Random-field *q*-state Potts model: m = q and $f(\sigma) = (1_{\sigma_0=1}, ..., 1_{\sigma_0=q})$. Thus

$$H^{\eta}(\sigma) = -\sum_{u \sim v} \mathbf{1}_{\sigma_u = \sigma_v} - \lambda \sum_{v} \sum_{k=1}^{q} \eta_{v,k} \mathbf{1}_{\sigma_v = k}$$

• Random-field spin O(n) model, $n \ge 2$: m = n and $f(\sigma) = \sigma_0$ (with $\mathbb{S}^{n-1} \subset \mathbb{R}^n$),

$$H^{\eta}(\sigma) = \sum_{u \sim v} |\sigma_u - \sigma_v|^2 - \lambda \sum_{v} \eta_v \cdot \sigma_v$$

3

Imry-Ma phenomenon

- Imry-Ma (1975) considered the effects of disorder for the random-field Ising and spin O(n) models, and predicted that in low dimensions, an arbitrarily small disorder strength λ causes the models to lose their ordered phase, as follows: The random-field Ising model is disordered at all temperatures for d ≤ 2. The random-field spin O(n) model is disordered at all temperatures for d ≤ 4.
- Aizenman-Wehr (1989) proved the predictions as part of a general statement.
- Notation: Write $\Lambda_L^d \coloneqq \{-L, ..., L\}^d$. For each disorder η , write $\langle \cdot \rangle_{\mu}$ for the thermal expectation according to a Gibbs measure μ of the η -disordered system. Write \mathbb{P} and \mathbb{E} for the probability and expectation operator over η .
- Theorem (Aizenman-Wehr, special case): For a disordered lattice system with compact state space (as discussed above) in dimensions d = 1, 2, at temperature $0 \le T < \infty$ and disorder strength $\lambda > 0$, the limit

$$\lim_{L\to\infty}\frac{1}{L^d}\sum_{\nu\in\Lambda_L^d}\langle f(\mathcal{T}_\nu(\sigma))\rangle_\mu$$

exists and has the same value for all Gibbs measures μ and almost all η . The same holds in dimensions $1 \le d \le 4$ for the spin O(n) models with $n \ge 2$.

• Our goal: Develop a quantitative understanding of this phenomenon.

Random-field Ising model

- Random-field Ising model Hamiltonian: $H^{\eta}(\sigma) = -\sum_{u \sim v} \sigma_u \sigma_v \lambda \sum_v \eta_v \sigma_v$
- The disordered model still satisfies the usual monotonicity (FKG) properties. In particular, the model has maximal and minimal Gibbs measures $\mu^{\eta,+}$ and $\mu^{\eta,-}$, arising in the thermodynamic limit from constant boundary conditions. The Aizenman-Wehr theorem implies that $\mu^{\eta,+} = \mu^{\eta,-}$ in two dimensions η -almost surely, so that the model has a unique Gibbs measure.
- A natural quantitative parameter is $m_L \coloneqq \mathbb{E}\left(\langle \sigma_0 \rangle_{\Lambda_L^2}^+\right)$ where $\langle \cdot \rangle_{\Lambda_L^2}^+$ denotes the thermal expectation in $\{-L, ..., L\}^2$ with +1 boundary conditions.
- A bound of the form $m_L \leq \exp(-c(\lambda, T)L)$ is relatively simple for large disorder strength λ or high temperatures T, so interested in small λ and low temperature.
- Results: $m_L \leq \frac{C(\lambda)}{\sqrt{\log \log L}}$ (Chatterjee 2017), $m_L \leq \frac{C(\lambda)}{L^{c(\lambda)}}$ (Aizenman-P. 2018) and finally $m_L \leq C(\lambda) \exp(-c(\lambda)L)$

proved at zero temperature by Ding-Xia 2019 and then at positive temperature by Ding-Xia 2019 and Aizenman-Harel-P. 2019.

• Still open to determine correlation length $c(\lambda)$. Proof seems to yield $c(\lambda) \le e^{e^{1/\lambda^2}}$ while physics predictions are that $c(\lambda) \simeq e^{\frac{1}{\lambda}}$ or $c(\lambda) \simeq e^{\frac{1}{\lambda^2}}$.

Quantitative results

- The other models discussed (Potts, spin-glasses, spin O(n)) do not share the monotonicity properties of the random-field Ising model and the proof techniques break down for them. Indeed, even the choice of which quantity to bound is non-obvious since it is unclear which boundary conditions τ maximize or minimize the average $\langle f(\mathcal{T}_v(\sigma)) \rangle_{\Lambda_L^2}^{\tau}$ and, indeed, it may be that these boundary conditions depend on the disorder η and on L and v. We obtain the following results.
- Theorem (Dario-Harel-P 2020+): For each two-dimensional disordered lattice system of the type described above, at temperature 0 ≤ T < ∞ and disorder strength λ > 0, there exists C > 0 so that for all L ≥ 2,

$$\mathbb{E}\left(\sup_{\tau_1,\tau_2:\mathbb{Z}^2\to S}\left\|\frac{1}{L^2}\sum_{\nu\in\Lambda_L^2}\langle f(\mathcal{T}_{\nu}(\sigma))\rangle_{\Lambda_L^2}^{\tau_1}-\langle f(\mathcal{T}_{\nu}(\sigma))\rangle_{\Lambda_L^2}^{\tau_2}\right\|\right)\leq \frac{C}{(\log\log L)^{\frac{1}{4}}}$$

For the *d*-dimensional random-field spin O(n) model with $n \ge 2$, at temperature $0 \le T < \infty$ and disorder strength $\lambda > 0$, there exists C > 0 so that for all $L \ge 2$,

$$\mathbb{E}\left(\sup_{\tau:\mathbb{Z}^{d}\to S}\left\|\frac{1}{L^{d}}\sum_{\nu\in\Lambda_{L}^{d}}\langle\sigma_{\nu}\rangle_{\Lambda_{L}^{d}}^{\tau}\right\|\right) \leq C \begin{cases} L^{-\frac{1}{3}} & d=2\\ L^{-\frac{1}{5}} & d=3\\ (\log\log L)^{-\frac{1}{2}} & d=4 \end{cases}$$

Uniqueness problem

• Conjecture: For a disordered lattice system with compact state space (as discussed above) in dimension d = 2, at temperature $0 \le T < \infty$ and disorder strength $\lambda > 0$, it holds that η -almost surely, for all vertices $v \in \mathbb{Z}^2$, the value of

 $\langle f(\mathcal{T}_v(\sigma))\rangle_\mu$

is the same for all Gibbs measures μ of the η -disordered system.

• The conjecture is equivalent to the following finite-volume statement:

$$\lim_{L \to \infty} \sup_{\tau_1, \tau_2: \mathbb{Z}^2 \to S} \left\| \langle f(\sigma) \rangle_{\Lambda_L^2}^{\tau_1} - \langle f(\sigma) \rangle_{\Lambda_L^2}^{\tau_2} \right\| = 0, \qquad \eta - \text{almost surely}$$

- The value of $\mathcal{T}_{v}(\sigma)$ itself need not be unique in general systems. For instance, a global sign flip applied to σ in a spin glass system (with Hamiltonian $H^{\eta}(\sigma) = -\lambda \sum_{u \sim v} \eta_{u,v} \sigma_{u} \sigma_{v}$) takes one Gibbs measure to another.
- Applied to two-dimensional spin glasses at zero temperature, the conjecture implies the conjecture that the spin glass system has a unique ground-state pair.

Partial uniqueness result

- Due to the disorder in the systems considered, it does not make sense to consider translation-invariant Gibbs measures. Instead, the following notion of translationcovariant Gibbs measures has been proposed.
- A measurable map ρ from the disorder variables η to the Gibbs measures of the η disordered system is called a translation-covariant Gibbs measure if $\rho(\mathcal{T}_{v}(\eta)) = \mathcal{T}_{v}(\rho(\eta))$

for all vertices $v \in \mathbb{Z}^d$ (the translation \mathcal{T}_v naturally extends to Gibbs measures).

- Compactness arguments (Aizenman-Wehr, Newman-Stein) show that translationcovariant Gibbs measures always exist for the disordered systems considered above (as barycenters of translation-covariant metastates).
- Theorem: For a disordered lattice system with compact state space (as discussed above) in dimension d = 2, at temperature $0 \le T < \infty$ and disorder strength $\lambda > 0$, it holds that η -almost surely, for all vertices $v \in \mathbb{Z}^2$, the value of $\langle f(\mathcal{T}_v(\sigma)) \rangle_{\rho(\eta)}$

is the same for all translation-covariant Gibbs measures ρ .

• Corollary: For the two-dimensional spin glass model at zero temperature, if there exists a translation-covariant extremal Gibbs measure then there is a unique translation-covariant Gibbs measure up to a global sign flip.

Proof sketch for compact state space

• Theorem recalled: For the above disordered systems with compact state space in two dimensions, at $0 \le T < \infty$ and $\lambda > 0$, there exists C > 0 so that for all $L \ge 2$,

$$\mathbb{E}\left(\sup_{\tau_1,\tau_2:\mathbb{Z}^2\to S}\left\|\frac{1}{L^2}\sum_{\nu\in\Lambda_L^2}\langle f(\mathcal{T}_{\nu}(\sigma))\rangle_{\Lambda_L^2}^{\tau_1}-\langle f(\mathcal{T}_{\nu}(\sigma))\rangle_{\Lambda_L^2}^{\tau_2}\right\|\right)\leq \frac{C}{(\log\log L)^{\frac{1}{4}}}$$

• To simplify, assume $f(\sigma) = f(\sigma_0) \in \mathbb{R}$ and fix T > 0. Write $Z^{\eta}_{T,\Lambda,\tau}$ for the partition function at temperature T, in a finite $\Lambda \subset \mathbb{Z}^2$ and with boundary conditions τ . Thus

$$Z^{\eta}_{T,\Lambda,\tau} \coloneqq \int e^{-\frac{1}{T}H^{\eta}_{\Lambda}(\sigma)} \prod_{\nu \in \Lambda} d\kappa(\sigma_{\nu}) \prod_{\nu \in \Lambda^{c}} \delta_{\tau_{\nu}}(\sigma_{\nu})$$

with $H^{\eta}_{\Lambda}(\sigma)$ the terms in the Hamiltonian $H^{\eta}(\sigma) = H(\sigma) - \lambda \sum_{\nu} \eta_{\nu} f(\mathcal{T}_{\nu}(\sigma))$ depending on the spins in Λ . Let $F^{\eta}_{\Lambda}(\tau) \coloneqq \frac{T}{|\Lambda|} \log Z^{\eta}_{T,\Lambda,\tau}$ be minus the free energy.

- Standard facts: 1) $F^{\eta}_{\Lambda}(\tau)$ is a convex function of η .
- 2) For each Λ : $\sup_{\tau_1,\tau_2} \left| F_{\Lambda}^{\eta}(\tau_1) F_{\Lambda}^{\eta}(\tau_2) \right| \leq \frac{C|\partial\Lambda|}{|\Lambda|}.$
- 3) Write $\eta = (\hat{\eta}_{\Lambda}, \eta_{\Lambda}^{\perp})$ where $\hat{\eta}_{\Lambda} \coloneqq \frac{1}{|\Lambda|} \sum_{\nu \in \Lambda} \eta_{\nu}$ and $\eta_{\Lambda,\nu}^{\perp} \coloneqq \eta_{\nu} \hat{\eta}_{\Lambda}$. Then $\frac{\partial}{\partial \hat{\eta}_{\Lambda}} F_{\Lambda}^{(\hat{\eta}_{\Lambda}, \eta_{\Lambda}^{\perp})}(\tau) = \frac{\lambda}{|\Lambda|} \sum_{\nu} \langle f(\mathcal{T}_{\nu}(\sigma)) \rangle_{\Lambda}^{\tau}$, with the sum over terms involving spins in Λ

Proof sketch II

• Lemma: Let Λ satisfy $|\partial \Lambda| \leq C \sqrt{|\Lambda|}$. Then for each $\delta > 0$,

$$\mathbb{P}\left(\sup_{\tau_{1},\tau_{2}:\mathbb{Z}^{d}\to S}\left|\frac{\lambda}{|\Lambda|}\sum_{\nu}f\left(\mathcal{T}_{\nu}\left(\sigma_{\Lambda,\tau_{1}}^{\eta}\right)\right)-f\left(\mathcal{T}_{\nu}\left(\sigma_{\Lambda,\tau_{2}}^{\eta}\right)\right)\right|<2\delta\right)\geq\exp\left(-\frac{C}{\delta^{4}}\right)$$

• Proof sketch: Claim: Let $g: \mathbb{R} \to \mathbb{R}$ be a convex 1-Lipschitz function. Set $N_r(g) \coloneqq \{h: \mathbb{R} \to \mathbb{R} \text{ convex } 1-\text{Lipschitz } \mid \|h - g\|_{\infty} \leq r\}.$ Then for each $r, \delta > 0$.

$$\operatorname{Leb}(\{x \in \mathbb{R} \mid \exists h \in N_r(f), |h'(x) - g'(x)| \ge \delta\}) \le \frac{cr}{\delta^2}$$

• Fix $\tau_0: \mathbb{Z}^d \to S$ and let $g(x) \coloneqq F_{\Lambda}^{(x,\eta_{\Lambda_L}^{\perp})}(\tau_0)$. Then for all $\tau, F_{\Lambda}^{(x,\eta_{\Lambda_L}^{\perp})}(\tau) \in N_{\underline{C|\partial\Lambda|} \atop |\Lambda|}(g)$.

On this event, the Claim implies that

$$\operatorname{Leb}\left(\left\{x \in \mathbb{R} \mid \exists \tau : \mathbb{Z}^d \to S, \qquad \left|\frac{\partial}{\partial \hat{\eta}_{\Lambda}} g_{\Lambda}^{(x,\eta_{\Lambda}^{\perp})}(\tau) - \frac{\partial}{\partial \hat{\eta}_{\Lambda}} g_{\Lambda}^{(x,\eta_{\Lambda}^{\perp})}(\tau_0)\right| \ge \delta\right\}\right) \le \frac{C |\partial \Lambda|}{|\Lambda| \delta^2} \le \frac{C}{\sqrt{|\Lambda|} \delta^2}$$

• Since $\hat{\eta}_{\Lambda} \coloneqq \frac{1}{|\Lambda|} \sum_{\nu \in \Lambda} \eta_{\nu}$ is Gaussian with standard deviation $\frac{1}{\sqrt{|\Lambda|}}$ we conclude that $\mathbb{P}\left(\sup_{\tau:\mathbb{Z}^{d} \to S} \left| \frac{\lambda}{|\Lambda|} \sum_{\nu} f\left(\mathcal{T}_{\nu}(\sigma_{\Lambda,\tau}^{\eta})\right) - f\left(\mathcal{T}_{\nu}\left(\sigma_{\Lambda,\tau_{0}}^{\eta}\right)\right) \right| < \delta\right) \ge \exp\left(-\frac{C}{\delta^{4}}\right)$

which implies the lemma.

Proof sketch III

- Let $L \ge 2$. Call a set $\Lambda' \subset \Lambda_L \epsilon$ -fluctuative if $\sup_{\tau_1, \tau_2: \mathbb{Z}^d \to S} \left| \frac{\lambda}{|\Lambda'|} \sum_{v} f\left(\mathcal{T}_v\left(\sigma_{\Lambda', \tau_1}^{\eta}\right) \right) - f\left(\mathcal{T}_v\left(\sigma_{\Lambda', \tau_2}^{\eta}\right) \right) \right| < \epsilon$
- Perform a Mandelbrot percolation: Set $\delta \coloneqq \frac{C}{(\log \log L)^{\frac{1}{4}}}$ and $k = C/\delta$.

Partition Λ_L into k squares. Then partition each of these into k squares and so on until reaching squares of constant size. A square in this recursive partition is taken if it is 4δ -fluctuative and the squares containing it are not 4δ -fluctuative.

• Define $B \coloneqq \{v \in \Lambda_L \mid v \text{ is not in a taken square}\}$. Then

•

$$\sup_{\tau_{1},\tau_{2}:\mathbb{Z}^{d}\to S}\left|\frac{\lambda}{|\Lambda_{L}|}\sum_{\nu}f\left(\mathcal{T}_{\nu}\left(\sigma_{\Lambda_{L},\tau_{1}}^{\eta}\right)\right)-f\left(\mathcal{T}_{\nu}\left(\sigma_{\Lambda_{L},\tau_{2}}^{\eta}\right)\right)\right|\leq 4\delta+\frac{C|B|}{|\Lambda_{L}|}$$

• It remains to show that $\mathbb{P}(v \in B) \leq \delta$. Write $\Lambda_0(v) \supset \Lambda_1(v) \supset \Lambda_2(v) \supset \cdots$ for the partition squares containing v. Since $|\Lambda_{\ell+1}(v)| \leq c\delta |\Lambda_{\ell}(v)|$, one concludes that

$$\{v \in B\} \subset \bigcap_{\ell} \{\Lambda_{\ell}(v) \setminus \Lambda_{\ell+1}(v) \text{ is not } 2\delta - \text{fluctuative}\}$$

• The events in the intersection are independent since the annuli are disjoint. The previous lemma bounds their probabilities, concluding the proof.

Non-compact case: Random-field random surfaces

- We now discuss the effect of disorder on systems with non-compact state space. • Our focus is on random surface models.
- Let $(\eta_v)_{v \in \mathbb{Z}^d}$ be independent standard Gaussian random variables. •
- A real-valued random-field random surface is the model on $\phi: \mathbb{Z}^d \to \mathbb{R}$ with Hamiltonian

$$H^{\eta}(\phi) = \sum_{u \sim v} V(\phi_u - \phi_v) - \lambda \sum_{v} \eta_v \phi_v$$

where V: $\mathbb{R} \to \mathbb{R}$ is a measurable even function termed the potential. The case $V(x) = x^2$ is the real-valued random-field Gaussian free field.

- We also study the integer-valued random-field Gaussian free field which has the • same Hamiltonian as above with $V(x) = x^2$ but restricts to $\phi: \mathbb{Z}^d \to \mathbb{Z}$.
- Our goal the localization/delocalization properties of these disordered surfaces. ٠
- Without disorder: the gradient of these surfaces localizes in all dimensions $d \ge 1$. • On Λ_L^d , real-valued surfaces delocalize with variance L when d = 1 and with variance $\log L$ when d = 2 while staying localized for $d \ge 3$. The integer-valued GFF behaves similarly except for a roughening transition when d = 2, from localized to logarithmic delocalization as the temperature increases. $_{12}$

Random-field random surfaces: results

• Theorem (Dario-Harel-P 2020+): Consider the real-valued random-field random surfaces above at all temperatures $0 \le T < \infty$ and all disorder strengths $\lambda > 0$ on Λ_L^d with zero boundary conditions. Assume $0 < c_- \le V'' \le c_+ < \infty$. Then

- Discrete Gradient:
$$\mathbb{E}\left(\left\langle\frac{1}{L^d}\sum_{\{u,v\}\in E(\Lambda_L^d)}(\phi_u-\phi_v)^2\right\rangle\right) \approx \begin{cases} L & d=1\\ \log L & d=2\\ 1 & d\geq 3 \end{cases}$$

- Height fluctuations:
$$\mathbb{E}(\langle \phi_0 \rangle^2) \approx \begin{cases} L^{4-d} & d = 1,2,3 \\ \log L & d = 4 \\ 1 & d \ge 5 \end{cases}$$

• Theorem (Dario-Harel-P 2020+): The integer-valued random-field Gaussian free field, at all temperatures $0 \le T < \infty$ and disorder strengths $\lambda > 0$, satisfies the gradient estimate above, and, when d = 1,2, satisfies

$$\mathbb{E}\left(\left|\frac{1}{L^d}\sum_{\nu\in\Lambda_L^d}\phi_{\nu}^2\right|\right)\approx L^{4-d}$$

Additionally, this expectation is bounded in L in dimensions $d \ge 3$ at low temperatures and small disorder strength $\lambda > 0$.

Random-field random surfaces: previous results

- Bovier-Külske studied a random field Solid-On-Solid model in which the disorder enters differently from the way it is introduced here. They proved a certain form of delocalization in two dimensions (Bovier-Külske 1996) and localization in three and higher dimensions (Bovier-Külske 1994).
- Külske and Orlandi 2006 prove that for all deterministic fields η , a random surface with field η will delocalize with at least logarithmic variance in two dimensions, when the potential V satisfies $\sup V(x) < \infty$.
- Van Enter and Külske 2008 proved a form of delocalization for the gradients of the random-field random surface for a wide class of potentials in two dimensions. The result is non-quantitative.

They further proved a lower bound on the rate of correlation decay for gradient Gibbs measures, when they exist, in three dimensions.

Cotar and Külske proved the existence of translation-covariant gradient Gibbs measures for random-field random surfaces in dimensions d ≥ 3 (Cotar and Külske 2012) and their uniqueness for each given expected tilt (Cotar and Külske 2015), for a large class of potentials.

Open questions

• For disordered systems with compact state space, improve the bounds on

$$\mathbb{E}\left(\sup_{\tau_{1},\tau_{2}:\mathbb{Z}^{d}\to S}\left\|\frac{1}{L^{d}}\sum_{\nu\in\Lambda_{L}^{d}}\langle f(\mathcal{T}_{\nu}(\sigma))\rangle_{\Lambda_{L}^{d}}^{\tau_{1}}-\langle f(\mathcal{T}_{\nu}(\sigma))\rangle_{\Lambda_{L}^{d}}^{\tau_{2}}\right\|\right)$$

If the sum is performed over a concentric box of half the size, does it decay exponentially fast with L in two dimensions at all T and $\lambda > 0$?

- Uniqueness conjecture: For two-dimensional disordered systems, for each $v \in \mathbb{Z}^2$, η -almost surely, the value of $\langle f(\mathcal{T}_v(\sigma)) \rangle_{\mu}$ is the same for all Gibbs measures μ .
- Is there a Berezinskii-Kosterlitz-Thouless type transition as the disorder strength lowers (i.e., transition from exponential to power-law decay) for the random-field spin O(n) models with n = 2 in dimensions d = 3 or d = 4? What about $n \ge 3$?
- What is the localization/delocalization behavior of the integer-valued random-field Gaussian free field in dimensions d ≥ 3 at high disorder strength λ?
 Conjecture: Delocalization in dimension d = 3 and localization when d ≥ 5.
 Thus we conjecture a roughening transition in the disorder strength for d = 3.